Modeling of Multi Terminal HVDC Systems in Power Flow and Optimal Power Flow Formulations
نویسنده
چکیده
Nowadays, due to lack of a strong interconnection between electric power systems within EU, there is a concern about the restricted power exchange. On the other hand, one of the factors which results in necessity of improving the level of power exchange is development of renewable energy sources such as offshore wind farms. Multi-terminal HVDC (MTDC) systems are supposed to be one of the cost-effective ways to aggregate a huge amount of renewable energies on one side and on the other side connect it to the main AC system through a common DC network. Possibility of such connections has led to the proposition of a meshed DC grid which connects several renewable energy sources and large AC systems. In order to fully take advantages of such AC-DC systems in the realsize power systems, extensive research has to be carried out to reveal their steady state and dynamic behavior. This thesis addresses different steady state aspects of such hybrid AC-DC systems. In the first part of thesis, we develop a multi-option power flow approach for hybrid AC-DC grids. The main contribution of this approach is that only one additional state variable is added to the AC and DC variables for each slack converter to handle the slack converter losses. Doing so, all AC, DC and converter equations are solved simultaneously. This makes the power flow algorithm much simpler than the sequential approaches where one external iterative loop is assigned to compute the converter losses. Such a high number of iterative loops in the sequential approaches makes the algorithm not only complicated and time consuming, but also unreliable. In the second part of thesis, given the nonconvex nature of Power Flow Optimisation (OPF) problem, a convex OPF formulation for AC grids with embedded DC networks based on the new Line Flow Based (LFB) variables
منابع مشابه
DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy
This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...
متن کاملDynamic Harmonic Modeling and Analysis of VSC-HVDC Systems
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs a Dynamic Harmonic Domain (DHD) based framework for dynamic harmonic analysis of VSC-HVDC systems. These systems are wide...
متن کاملOptimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm
Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...
متن کاملPower Flow Solution on Multi-Terminal HVDC Systems: Supergrid Case
High Voltage Direct Current (HVDC) systems offer distinct advantages for the integration of offshore wind farms to inland grid system. HVDC transmission system based on Voltage Source Converter (VSC) enables multi-terminal use HVDC for the integration of large-scale wind power in the North Sea. That network requires a special formulation for power flow analysis as opposed to the conventional me...
متن کاملSolving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm
The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...
متن کامل